已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围、、

已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围、、
当x∈[1,a]时,f(x)的最小值为f(a)
则说明函数f(x)在区间[1,a]上单调递减
而f(x)=x²-6x+8,其对称轴为x=3,且图像开口向上
因此对称轴左侧单调递减,右侧单调递增
也就是说对称轴x=3在区间[1,a]的右侧,
因此a≤3
又a>1
∴1<a≤3
为什么答案不是a=3?
数学人气:797 ℃时间:2019-08-19 01:36:47
优质解答
已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围
我来给你详细说明吧,你按照我的思路就明白了:
f(x)=x^2-6x+8
=(x-3)^2-1
则对称轴x=3,顶点纵坐标为-1
对于这个抛物线来说,在对称轴左侧单调递减,对称轴右侧单调递增.
因为1为什么答案不是a=3? 3不是函数的最低点么?题目的最小值是f(a)不是f(3),f(3)只是a的一个情况
我来回答
类似推荐
请使用1024x768 IE6.0或更高版本浏览器浏览本站点,以保证最佳阅读效果。本页提供作业小助手,一起搜作业以及作业好帮手最新版!
版权所有 CopyRight © 2012-2024 作业小助手 All Rights Reserved. 手机版