在平面直角坐标系XOY中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量OM=向量OA+向量OB,求:(1

在平面直角坐标系XOY中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量OM=向量OA+向量OB,求:(1)点M的轨迹方程.(2)丨向量OM丨的最小值.
数学人气:774 ℃时间:2019-08-20 15:40:12
优质解答
(1)利用相关点法求轨迹方程,设P(x0,y0),M(x,y),利用点M的坐标来表示点P的坐标,最后根据x0,y0满足C的方程即可求得;
(2)先将| 向量OM |用含点M的坐标的函数来表示,再利用基本不等式求此函数的最小值即可.
(I)椭圆方程可写为:y2/a2+x2/b2=1式中a>b>0,且a2-b2=3 ;√3/a=√3/2得a2=4,b2=1,
所以曲线C的方程为:x2+y2/4=1(x>0,y>0).y=2√(1-x2)(0<x<1)y'=-2x/√(1-x2)
设P(x0,y0),因P在C上,有0<x0<1,y0=2√(1-x 0平方) ,y'|x=x0=-4x0/y0 ,得切线AB的方程为:y=-4x0/y0(x-x0)+y0.
设A(x,0)和B(0,y),由切线方程得x=1/x0 ,y=4/y0 .
由向量OM=向量OA+向量OB 得M的坐标为(x,y),由x0,y0满足C的方程,得点M的轨迹方程为:1/x2+4/y2=1(x>1,y>2)
(Ⅱ)| 向量OM |2=x2+y2,y2=4/(1-1/x2)=4+4/(x2-1),
∴| 向量OM |2=x2-1+4/(x2-1)+5≥4+5=9.
且当x2-1=4/(x2-1),即x=√3>1时,上式取等号.
故| 向量OM |的最小值为3.
我来回答
类似推荐
请使用1024x768 IE6.0或更高版本浏览器浏览本站点,以保证最佳阅读效果。本页提供作业小助手,一起搜作业以及作业好帮手最新版!
版权所有 CopyRight © 2012-2024 作业小助手 All Rights Reserved. 手机版